• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Scheme for Delay-Sensitive Spatiotemporal Routing in SDN-Enabled Underwater Acoustic Sensor Networks

    Thumbnail
    Date
    2019
    Author
    Lin C.
    Han G.
    Guizani M.
    Bi Y.
    Du J.
    Metadata
    Show full item record
    Abstract
    In underwater acoustic sensor networks (UASNs), the sensors are deployed at different areas of the ocean, which perform information collection and delay-sensitive routing to the data center for further processing or industrial computing. However, in UASNs, the network states have spatiotemporal characteristics due to tides or autonomous underwater vehicles. To steadily route the traffic especially when the spatiotemporal characteristics of the UASNs are considered, a network architecture with intelligent traffic engineering or routing policies is indispensable. In this paper, we employ software-defined networking (SDN) technology and propose an SDN-enabled distributed architecture for UASNs. Based on the proposed architecture, we propose a scheme DSR-SDN for delay-sensitive spatiotemporal routing in SDN-enabled UASNs. The DSR-SDN includes three phases: First, topology awareness; second, spatiotemporal characteristics estimation; and third, routing computation. Particularly, with SDN features, DSR-SDN provides topology awareness based on a proposed software-defined beaconing scheme. Based on the detected topology, the spatiotemporal characteristics of the network states are estimated based on a proposed SDN-based hierarchical node localizing approach SDN-HL. Lead by the SDN controllers, SDN-HL makes use of the proposed 'minimum weighted gap' formulation and Adam algorithm to optimize the localization and builds the indirect links to increase the localization rate. To route the traffic through the network with spatiotemporal characteristics, we adopt the time-expanded network approach, based on which a spatiotemporal route decision can be made before the routing starts. The simulation results demonstrate that the proposed scheme, i.e., DSR-SDN, can conduct accurate spatiotemporal characteristic estimation for the network states and provide delay-sensitive spatiotemporal routing for the sensed data. - 1967-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2931312
    http://hdl.handle.net/10576/14391
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video