• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Developing ANN-Kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Ismail H.Y.
    Singh M.
    Darwish S.
    Kuhs M.
    Shirazian S.
    Croker D.M.
    Khraisheh M.
    Albadarin A.B.
    Walker G.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Artificial neural network (ANN) modelling is applied to predict the mean residence time of pharmaceutical formulation in a twin-screw granulator. Process parameters including feed flow rate, screw speed, and liquid to solid ratio are correlated with the obtained values of mean residence time to build a predictive tool. In order to improve the ANN predictive capability, a kriging interpolation approach is utilised and both ANN models (before and after kriging) are compared. Experimental data is obtained for wet granulation of microcrystalline cellulose using a bench-scale 12 mm twin-screw granulator. In addition, the effect of screw configurations on mean residence time is investigated by the developed ANN. The ANN model is made of two hidden layers with 2 linear nodes in each layer, and the linear system of equations is derived for the improved ANN model. The results revealed that the developed model was capable of predicting the mean residence time in the granulator more accurately after applying kriging interpolation, with an R2 value of about 0.92 for both training and validation. ANN model after kriging shows a dramatic improvement of R2 by 4% and 22% in training and validating phases, respectively. Also, the RMSE was improved by 40% and 61.5% in training and validating phases, respectively. Furthermore, this improvement was reflected in the contour profiles of the ANN models before and after kriging interpolation, where the model that uses the interpolated data points shows a smoother contour profiles and wider prediction areas. Screw configuration has the most significant effect on the residence time of granules inside the granulator where adding more kneading zones results in a substantial increase in the mean residence time compared to other process parameters.
    DOI/handle
    http://dx.doi.org/10.1016/j.powtec.2018.11.060
    http://hdl.handle.net/10576/14472
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video