Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles
View/ Open
Publisher version (Check access options)
Check access options
Date
2019Metadata
Show full item recordAbstract
In this work, copper nanoparticles using three different modes are synthesized and evaluated for electrochemical properties towards non-enzymatic glucose biosensors. Copper oxide nanoparticles thus obtained are characterized using X-ray diffractometer (XRD), Scanning Electron Microscope (SEM), transmission electron microscopy (TEM) and UV–Vis for their crystallinity, morphology and optical properties. The nanoparticles obtained using colloidal method (Cu-Colloid) give uniform phase of CuO and flower shaped morphology. The nanoparticles synthesized using solution combustion method with glycine (Cu-Gly) and hydrazine (Cu-Hyd) as fuel provide particles of irregular round shape and small flake-like structures respectively. The glucose electro oxidative current is highest for Cu-Colloid catalysts and could be due to the higher area of contact of the catalyst surface with the glucose. Cu-colloid particles with flower shaped morphology give wide linear response in the range of 1 μM to 850 μM along with the lowest limit of detection of 0.25 μM and highest sensitivity of 2062 μA mM−1 cm−2. Cu-Colloid catalyst show poor response on the presence of co-existing species on the blood sample when compared to its sensitivity towards glucose. The time response of Cu-Colloid particles for glucose detection is the least when compared to other two nanoparticles. Also, the Cu-Colloid particles show excellent reproducibility and stability that makes it a promising electrode for the non-enzymatic glucose bio-sensors.
Collections
- Chemical Engineering [1174 items ]
- Mechanical & Industrial Engineering [1396 items ]