• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Supervised machine learning techniques for efficient network intrusion detection

    Thumbnail
    Date
    2019
    Author
    Aboueata, Nada
    Alrasbi, Sara
    Erbad, Aiman
    Kassler, Andreas
    Bhamare, Deval
    Metadata
    Show full item record
    Abstract
    Cloud computing is gaining significant traction and virtualized data centers are becoming popular as a cost-effective infrastructure in telecommunication industry. Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) are being widely deployed and utilized by end users, including many private as well as public organizations. Despite its wide-spread acceptance, security is still the biggest threat in cloud computing environments. Users of cloud services are under constant fear of data loss, security breaches, information theft and availability issues. Recently, learning-based methods for security applications are gaining popularity in the literature with the advents in machine learning (ML) techniques. In this work, we explore applicability of two well-known machine learning approaches, which are, Artificial Neural Networks (ANN) and Support Vector Machines (SVM), to detect intrusions or anomalous behavior in the cloud environment. We have developed ML models using ANN and SVM techniques and have compared their performances. We have used UNSW-NB-15 dataset to train and test the models. In addition, we have performed feature engineering and parameter tuning to find out optimal set of features with maximum accuracy to reduce the training time and complexity of the ML models. We observe that with proper features set, SVM and ANN techniques have been able to achieve anomaly detection accuracy of 91% and 92% respectively, which is higher compared against that of the one achieved in the literature, with reduced number of features needed to train the models. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICCCN.2019.8847179
    http://hdl.handle.net/10576/14801
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video