• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and analysis of flexible joints for a robust 3d printed prosthetic hand

    Thumbnail
    Date
    2019
    Author
    Alkhatib, Farah
    Mahdi, Elsadig
    Cabibihan, John-John
    Metadata
    Show full item record
    Abstract
    In war-affected regions in the world, limb loss is one of the leading injuries. The need for low-cost, low-maintenance prostheses arises. The rapid developments in 3D printing allows us to investigate robotic or prosthetic hand designs that can satisfy those basic requirements. 3D printed prosthetic hands are more affordable and lightweight alternatives for prostheses. In this paper, we investigate the flexibility of different designs of the soft joints of a low-cost 3D printed prosthetic hand with respect to the material type. We designed flexible joints from elastomeric materials instead of plastic joints. This modification can make the current 3D printed prosthesis designs more robust. As a drawback from these flexible joints, the prosthetic hand will not be in a full open palm position in its initial state, as compared to typical designs. We then converted this drawback to a beneficial feature by calculating the angles of the natural pose of the human hands and transfer those angles to the prosthetic hands with flexible joints. This work has implications in the design of 3D printed prosthetic hands that can be deployed for war-wounded refugees or for those in low-resource countries. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICORR.2019.8779372
    http://hdl.handle.net/10576/14868
    Collections
    • Mechanical & Industrial Engineering [‎941‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video