• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based – flocculants: Effect on harvesting efficiency, water recovery and algal cell morphology

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Shurair, Mohamad
    Almomani, Fares
    Bhosale, Rahul
    Khraisheh, Majeda
    Qiblawey, Hazim
    Metadata
    Show full item record
    Abstract
    Quick algae harvesting methodologies relating optimum flocculent dose (DOpt.), percentage harvesting efficiency (%HE) and percentage water recovery (%WRecovery) to the in-situ hydrodynamic properties of water-algae systems are presented. Flocculation of three microalgae in single and sequential steps, using chemical (polymer and ferric chloride) and biological (egg shells) flocculants, was studied. Zeta potential and pH analysis were completed to further understand the flocculation mechanism. Polymer at DOpt. of 7.0 g/kgDS resulted in WRecovery of 90% and %HE of 96.7%. Lower %HE (92.1), %WRecovery (79) and noticeable algal cells deformation was observed for ferric chloride at DOpt. of 7.0 g/kg DS. Bio-flocculant conserved algal structure and resulted in %HE of 96.2 and %WRecovery of 90 at DOpt. of 5.4 g/kgDS. Significant % HE of 99.8, %WRecovery of 99.8%, and up to 95% reduction in DOpt. were achieved in sequential flocculation. The results established the effectiveness and suitability of sequential/ bio-flocculation for algae harvesting. - 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.biortech.2019.02.103
    http://hdl.handle.net/10576/14876
    Collections
    • Chemical Engineering [‎1205‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video