• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Terminal settling velocity of a single sphere in drilling fluid

    Thumbnail
    Date
    2019
    Author
    Rushd, S.
    Hassan, I.
    Sultan, R.A.
    Kelessidis, V.C.
    Rahman, A.
    Hasan, H.S.
    Hasan, A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The accurate prediction of terminal settling velocity of solid spheres in non-Newtonian liquids is important for various fluid-particle systems such as slurry pipelines, separation processes, hole-cleaning in drilling operations, and mineral processing. The standard practice for the prediction involves an implicit procedure that requires repeated iterations using Newtonian correlations. Wilson et al. developed an explicit method that allows direct (noniterative) prediction of the velocity in non-Newtonian liquids. Although very useful, the original Wilson model has an empirical constraint that limits its application. In this study, experiments are performed to measure the terminal settling velocity of precision spheres in Newtonian liquid (water) and non-Newtonian drilling fluids (Flowzan solutions). The Herschel–Bulkley three parameter model satisfactorily modeled the non-Newtonian rheology. Experimental data and similar measurements available in the literature are presented in this paper. The data exhibited the standard relationship between the drag coefficient and the Reynolds number. The original Wilson model was tested for these data points and was modified in this study to address its limitations. Consequently, it was observed that the modified version yielded more accurate results than the original model. Its prediction was especially better when the value of corresponding Reynolds number was more than 10.
    DOI/handle
    http://dx.doi.org/10.1080/02726351.2018.1472162
    http://hdl.handle.net/10576/15015
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video