• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimization of energy pile conductance using finite element and fractional factorial design of experiment

    Thumbnail
    Date
    2019
    Author
    Ahmed, Khaled
    Al-Khawaja, Mohammed
    Suleiman, Muhannad
    Metadata
    Show full item record
    Abstract
    In Ground Source Heat Pumps (GSHP), Energy Piles pose as heat exchangers that transfer the heat from the buildings to the shallow ground lower temperature in order to decrease the energy consumption whilst cooling the buildings. These piles are mainly designed for highest possible thermal conductance. In this paper, nine factors influencing the thermal conductance of the energy pile are defined and statistically evaluated. These nine factors are; number of tubes, pile diameter, tube diameter, tube thickness, tube location, pile conductivity, tube conductivity, soil conductivity, and water flow rate. The thermal conductance of the energy pile is calculated using finite element model. The significance of these factors is evaluated using fractional factorial uniform design of experiment. The results show significance increase in the pile thermal conductance with the increase of the tube diameter, number of tubes, water flow rate, and tube and pile thermal conductivities. Furthermore, the tubes location near the pile outer surface show significant increase in the pile thermal conductance. On the other hand, decreasing pile diameter slightly increases the pile thermal conductance. Nevertheless, the soil thermal conductivity has shown insignificant effects on the pile thermal conductance. - 2019, Springer Nature Switzerland AG.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-319-97816-1_19
    http://hdl.handle.net/10576/15125
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video