• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RL-OPRA: Reinforcement Learning for Online and Proactive Resource Allocation of crowdsourced live videos

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0167739X20306269-main.pdf (2.695Mb)
    Date
    2020-11-01
    Author
    Baccour, Emna
    Erbad, Aiman
    Mohamed, Amr
    Haouari, Fatima
    Guizani, Mohsen
    Hamdi, Mounir
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    © 2020 Elsevier B.V. With the advancement of rich media generating devices, the proliferation of live Content Providers (CP), and the availability of convenient internet access, crowdsourced live streaming services have witnessed unexpected growth. To ensure a better Quality of Experience (QoE), higher availability, and lower costs, large live streaming CPs are migrating their services to geo-distributed cloud infrastructure. However, because of the dynamics of live broadcasting and the wide geo-distribution of viewers and broadcasters, it is still challenging to satisfy all requests with reasonable resources. To overcome this challenge, we introduce in this paper a prediction driven approach that estimates the potential number of viewers near different cloud sites at the instant of broadcasting. This online and instant prediction of distributed popularity distinguishes our work from previous efforts that provision constant resources or alter their allocation as the popularity of the content changes. Based on the derived predictions, we formulate an Integer-Linear Program (ILP) to proactively and dynamically choose the right data center to allocate exact resources and serve potential viewers, while minimizing the perceived delays. As the optimization is not adequate for online serving, we propose a real-time approach based on Reinforcement Learning (RL), namely RL-OPRA, which adaptively learns to optimize the allocation and serving decisions by interacting with the network environment. Extensive simulation and comparison with the ILP have shown that our RL-based approach is able to present optimal results compared to heuristic-based approaches.
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2020.06.038
    http://hdl.handle.net/10576/15529
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video