• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient cv control charts based on ranked set sampling

    Thumbnail
    Date
    2019
    Author
    Abbasi, Saddam Akber
    Abbas, Tahir
    Adegoke, Nurudeen Adedayo
    Metadata
    Show full item record
    Abstract
    Monitoring process variability is essential for establishing efficient process-control schemes. In practice, when the mean levels of a parameter are constant, and the process variance (or standard deviation) is independent of the mean, then, the process variability is typically monitored using conventional Shewhart R or S charts. However, in some practical situations, the mean levels are not constant, and the variance is not independent of the mean. In such cases, the coefficient of variation (CV) is often constant, and thus, CV control charts are generally used to address the issue of the variability in the process. In this paper, new CV charts based on ranked sampling schemes are proposed to enhance the monitoring power of the traditional CV chart. The charts are established based on ranked set sampling (RSS), median RSS (MRSS), and extreme RSS (ERSS), and are examined in terms of their run length performance. The efficiency of the proposed charts is compared with the existing classical CV chart under simple random sampling (SRS) scheme. The results, based on a simulation study, indicate that the newly developed rank-based CV charts show better detection of monitoring signals in process CV than the classical CV chart. In particular, the CV chart based on the ERSS technique performs notably better. A real-life example concerning the monitoring of outlet temperature is also provided to illustrate the application of the proposed charts. - 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2920873
    http://hdl.handle.net/10576/15600
    Collections
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video