Detecting emotions in English and Arabic tweets
المؤلف | Ahmad, Tariq |
المؤلف | Ramsay, Allan |
المؤلف | Ahmed, Hanady |
تاريخ الإتاحة | 2020-08-18T08:34:43Z |
تاريخ النشر | 2019 |
اسم المنشور | Information (Switzerland) |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 20782489 |
الملخص | Assigning sentiment labels to documents is, at first sight, a standardmulti-label classification task. Many approaches have been used for this task, but the current state-of-the-art solutions use deep neural networks (DNNs). As such, it seems likely that standard machine learning algorithms, such as these, will provide an effective approach. We describe an alternative approach, involving the use of probabilities to construct a weighted lexicon of sentiment terms, then modifying the lexicon and calculating optimal thresholds for each class. We show that this approach outperforms the use of DNNs and other standard algorithms. We believe that DNNs are not a universal panacea and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms. - 2019 by the authors. |
راعي المشروع | Funding: This publication was made possible by the NPRP award (NPRP 7-1334-6-039 PR3) from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author(s). |
اللغة | en |
الناشر | MDPI AG |
الموضوع | Multi-emotion classification Sentiment mining Shallow learning |
النوع | Article |
رقم العدد | 3 |
رقم المجلد | 10 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
اللغة العربية [129 items ]