• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes

    Thumbnail
    Date
    2017
    Author
    Bensalah, Nasr
    Bedoui, Ahmed
    Metadata
    Show full item record
    Abstract
    In this work, the treatment of 4-nitrophenol (NP) in water by ozonation, electrolysis, electro-peroxone (EP), and photo-electro-peroxone (PEP) processes was investigated. PEP process is based on the combination of ozonation, UV irradiation, and electrolysis using a carbon felt cathode and a boron-doped diamond (BDD) anode. In this process, H2O2 is electrochemically generated from reduction of O2 in the ozone generator effluent at a carbon felt cathode. The in situ generated H2O2 is simultaneously decomposed by UV-photolysis and by reaction with O3 to form HO• radicals that can rapidly and non-selectively oxidize organic pollutants. The results showed that PEP is the most efficient process for a rapid NP degradation in water than the other individual and combined methods. In addition, PEP process was able to completely remove total organic carbon (TOC) from NP solution after consumption of 4.1 kWh/kg TOC removed. Hydroquinone, 1,2,4-trihydroxybenzene, oxalic and maleic acids were identified as the main intermediates of NP degradation. The addition of iron to NP solution did not significantly affect the efficiency of PEP process. The results demonstrated that the incorporation of BDD anodes and UV light in PEP process can significantly enhance the kinetics and minimize energy requirements.
    DOI/handle
    http://dx.doi.org/10.1080/09593330.2017.1284271
    http://hdl.handle.net/10576/15721
    Collections
    • Chemistry & Earth Sciences [‎614‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video