Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets
المؤلف | Liesen, Jörg |
المؤلف | Sète, Olivier |
المؤلف | Nasser, Mohamed M. S. |
تاريخ الإتاحة | 2020-08-27T12:05:53Z |
تاريخ النشر | 2017 |
اسم المنشور | Computational Methods and Function Theory |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 16179447 |
الملخص | We present a numerical method for computing the logarithmic capacity of compact subsets of C, which are bounded by Jordan curves and have finitely connected complement. The subsets may have several components and need not have any special symmetry. The method relies on the conformal map onto lemniscatic domains and, computationally, on the solution of a boundary integral equation with the Neumann kernel. Our numerical examples indicate that the method is fast and accurate. We apply it to give an estimate of the logarithmic capacity of the Cantor middle third set and generalizations of it. - 2017, Springer-Verlag Berlin Heidelberg. |
راعي المشروع | We thank Thomas Ransford for bringing to our attention the analytic formula for the capacity of two unequal disks (Example 4.7). We also thank Nick Trefethen for sharing the numerical results on the capacity of the Cantor middle third set he obtained together with Banjai and Embree. |
اللغة | en |
الناشر | Springer Berlin Heidelberg |
الموضوع | Boundary integral equation Cantor middle third set Chebyshev constant Conformal map Lemniscatic domain Logarithmic capacity Transfinite diameter |
النوع | Article |
الصفحات | 689-713 |
رقم العدد | 4 |
رقم المجلد | 17 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [740 items ]