• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Collapse behavior of thin-walled corrugated tapered tubes

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Alkhatib S.E.
    Tarlochan F.
    Eyvazian A.
    Metadata
    Show full item record
    Abstract
    Thin-walled structures have been widely used in energy absorption and safety applications such as automotive, due to their lightweight and progressive folding modes. This work studies the collapse behavior and energy absorption of corrugated tapered tubes (CTT) under axial crushing numerically. The tested tubular structures were impacted axially with a striker's mass that is restricted to translational motion along the structures' axes. The effect of CTT's geometric features on different performance indicators, namely the initial peak force (PF), mean crushing force (MF), energy absorption (EA) and specific energy absorption (SEA) was studied. The results showed that the amplitude of corrugation is the most influential factor on the force-displacement characteristics of CTTs. Moreover, three deformation modes were found for CTTs, and the development of a mode was mainly influenced by the corrugation's amplitude and wavelength. In addition, for the tested range of geometric features, the initial peak force was found to be reduced when corrugation is adopted, especially for longer corrugation's amplitudes and wavelengths. On the other hand, the energy absorption (EA) and specific energy absorption (SEA) were found to be reduced when corrugation is adopted. Finally, it was found that the two most influential geometric factors on the performance indicators of CTT were the corrugation's amplitude and wall thickness. 1 2017 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.engstruct.2017.07.081
    http://hdl.handle.net/10576/16147
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video