• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-memory distributed matrix computation processing & optimization

    Thumbnail
    Date
    2017
    Author
    Yu, Yongyang
    Tang, Mingjie
    Aref, Walid G.
    Malluhi, Qutaibah M.
    Abbas, Mostafa M.
    Ouzzani, Mourad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The use of large-scale machine learning and data mining methods is becoming ubiquitous in many application domains ranging from business intelligence and bioinformatics to self-driving cars. These methods heavily rely on matrix computations, and it is hence critical to make these computations scalable and efficient. These matrix computations are often complex and involve multiple steps that need to be optimized and sequenced properly for efficient execution. This paper presents new efficient and scalable matrix processing and optimization techniques for in-memory distributed clusters. The proposed techniques estimate the sparsity of intermediate matrix-computation results and optimize communication costs. An evaluation plan generator for complex matrix computations is introduced as well as a distributed plan optimizer that exploits dynamic cost-based analysis and rule-based heuristics to optimize the cost of matrix computations in an in-memory distributed environment. The result of a matrix operation will often serve as an input to another matrix operation, thus defining the matrix data dependencies within a matrix program. The matrix query plan generator produces query execution plans that minimize memory usage and communication overhead by partitioning the matrix based on the data dependencies in the execution plan. We implemented the proposed matrix processing and optimization techniques in Spark, a distributed in-memory computing platform. Experiments on both real and synthetic data demonstrate that our proposed techniques achieve up to an order-of-magnitude performance improvement over state-ofthe-Art distributed matrix computation systems on a wide range of applications.
    DOI/handle
    http://dx.doi.org/10.1109/ICDE.2017.150
    http://hdl.handle.net/10576/16192
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video