Edge guided total variation for image denoising
المؤلف | Ben Said, Ahmed |
المؤلف | Hadjidj, Rachid |
المؤلف | Foufou, Sebti |
المؤلف | Abidi, Mongi |
تاريخ الإتاحة | 2020-09-24T10:49:24Z |
تاريخ النشر | 2017 |
اسم المنشور | 2017 51st Annual Conference on Information Sciences and Systems, CISS 2017 |
المصدر | Scopus |
الملخص | In this paper, we present a novel denoising algorithm based on the Rodin-Osher-Fatemi (ROF) model. The goal is to ensure maximum noise removal while preserving image details. To achieve this goal, we developed a new edge detector based on the structure tensor, Non-Local Mean filtering and fuzzy complement. This edge detector is incorporated in the objective function of the ROF model to introduce more control over the amount of regularization allowing more denoising in smooth regions and less denoising when processing edge regions. Experiments on synthetic images demonstrate the efficiency of the edge detector. Furthermore, denoising experiments and comparison with other algorithms show that the proposed method presents good performance in terms of Peak Signal-to-Noise Ratio and Structure Similarity Index. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Edge detection Image denoising Total variation |
النوع | Conference |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2427 items ]