Sentiment analysis of islamic news data using hyper-concepts
المؤلف | Al-Kubaisi, Khalid |
المؤلف | Hassaine, Abdelali |
المؤلف | Jaoua, Ali |
تاريخ الإتاحة | 2020-09-24T10:49:25Z |
تاريخ النشر | 2017 |
اسم المنشور | Advanced Science Letters |
المصدر | Scopus |
الملخص | Sentiment Analysis is the extraction of writers feeling from a written manuscript. It aims at predicting the sentiment of a particular text using automated means. There are two main ways to make predictions: (1) lexicon-based techniques; (2) machine learning based techniques. Our paper contributes in the machine learning techniques, which are more accurate. Furthermore, we have adopted a hyper-conceptual method as our primary feature extraction technique. This method extracts the keywords in a hierarchical ordering of importance. Classification is then performed using the Random Forest classifier that predicts the sentiment of each document. We were able to obtain an accuracy of 90% on an comments collected from Al Jazeera News website. |
راعي المشروع | Qatar National Research Fund, QNRF& Qatar Foundation, QF |
اللغة | en |
الناشر | American Scientific Publishers |
الموضوع | Hyper conceptual extraction Opinion mining Random forest Sentiment analysis Social computing |
النوع | Article |
الصفحات | 4560-4564 |
رقم العدد | 5 |
رقم المجلد | 23 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]