• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Plasmolysis-Inspired Nanoengineering of Functional Yolk-Shell Microspheres with Magnetic Core and Mesoporous Silica Shell

    Thumbnail
    Date
    2017
    Author
    Yue, Qin
    Li, Jialuo
    Zhang, Yu
    Cheng, Xiaowei
    Chen, Xiao
    Pan, Panpan
    Su, Jiacan
    Elzatahry, Ahmed A.
    Alghamdi, Abdulaziz
    Deng, Yonghui
    Zhao, Dongyuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Yolk-shell nanomaterials with a rattle-like structure have been considered ideal carriers and nanoreactors. Traditional methods to constructing yolk-shell nanostructures mainly rely on multistep sacrificial template strategy. In this study, a facile and effective plasmolysis-inspired nanoengineering strategy is developed to controllably fabricate yolk-shell magnetic mesoporous silica microspheres via the swelling-shrinkage of resorcinol-formaldehyde (RF) upon soaking in or removal of n-hexane. Using Fe3O4@RF microspheres as seeds, surfactant-silica mesostructured composite is deposited on the swelled seeds through the multicomponent interface coassembly, followed by solvent extraction to remove surfactant and simultaneously induce shrinkage of RF shell. The obtained yolk-shell microspheres (Fe3O4@RF@void@mSiO2) possess a high magnetization of 40.3 emu/g, high surface area (439 m2/g), radially aligned mesopores (5.4 nm) in the outer shell, tunable middle hollow space (472-638 nm in diameter), and a superparamagnetic core. This simple method allows a simultaneous encapsulation of Au nanoparticles into the hollow space during synthesis, and it leads to spherical Fe3O4@RF@void-Au@mSiO2 magnetic nanocatalysts, which show excellent catalysis efficiency for hydrogenation of 4-nitrophenol by NaBH4 with a high conversion rate (98%) and magnetic recycling stability
    DOI/handle
    http://dx.doi.org/10.1021/jacs.7b09055
    http://hdl.handle.net/10576/16328
    Collections
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video