عرض بسيط للتسجيلة

المؤلفAl Otaibi, Jameela
المؤلفHassaine, Abdelali
المؤلفSafi, Zeineb
المؤلفJaoua, Ali
تاريخ الإتاحة2020-10-01T11:39:52Z
تاريخ النشر2017
اسم المنشورAdvanced Science Letters
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1166/asl.2017.8893
معرّف المصادر الموحدhttp://hdl.handle.net/10576/16340
الملخصInconsistency detection is a large research area that has many applications. In the scope of Islamic content mining, this topic is of a particular interest because of the continuously increasing content and the need of people to find out more about its authenticity. Inconsistency detection is usually performed using linguistic analysis as well as the application of logic rules. We propose here a new method for inconsistency detection based on multilevel text categorization. For each categorization level, discriminative keywords are extracted using the hyper rectangular decomposition method which outputs the keywords in a hierarchical rank of importance. Then, those keywords are fed into the random forest classifier which automatically detects the category of each advisory opinion. Inconsistency detection is performed using an algorithm that detects inconsistent paths of advisory opinions. This study has been validated on a set of Islamic advisory opinions related to vows. The results are very interesting and show that our method is very promising in the field.
راعي المشروعThis contribution was made possible by NPRP grant 06-1220-1-233 from the Qatar National Research Fund (a member of Qatar Foundation).
اللغةen
الناشرAmerican Scientific Publishers
الموضوعHyper rectangular decomposition
Inconsistency detection
Random forest
Text categorization
العنوانInconsistency detection in Islamic advisory opinions using multilevel text categorization
النوعArticle
الصفحات4591-4595
رقم العدد5
رقم المجلد23


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة