• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 1: Energy, Environment & Resource Sustainability
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 1: Energy, Environment & Resource Sustainability
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-healing performance of smart coatings modified with different corrosion inhibitors.

    Thumbnail
    View/Open
    Self-healing performance of smart coatings modified with different corrosion inhibitors..pdf (3.191Mb)
    Date
    2020
    Author
    Habib, Sehrish
    Fayyed, Eman
    Nawaz, Muddasir
    Khan, Adnan
    Shakoor, Abdul
    Karahman, Ramazan
    Abdullah, Aboubakr
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Corrosion results in considerable materials and equipment failure. According to one survey, about 1/4 to 1/3 of the total interruption in industries is due to detrimental effects of corrosion. It is, therefore, important to prevent corrosion to guarantee the reliability of the assets. The present work aimed to explore the purpose of CeO2 as a carrier for corrosion inhibitors and its capability to release inhibitors, to achieve decent corrosion protection efficiency in epoxy-based polymeric nanocomposite coatings. Amine-based corrosion inhibitors (N-methylthiourea NMTU and Dodecylamine DDA) were used for CeO2 nano container modification, and corrosion inhibition efficiency has been explored utilizing electrochemical impedance spectroscopy (EIS) in 3.5 wt% NaCl solution. Loading of inhibitor into nanocontainer has been confirmed through Fourier-transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET). It was observed that 25% and 29.75% w/w of NMTU and DDA were loaded into nanocontainers, confirmed through Thermogravimetric analysis (TGA) analysis. Scanning electron microscopy (SEM) analysis endorsed the formation of a protective layer on a scratch area to protect steel from the external environment. This protective layer played a very important role in protecting steel from progressing corrosion on the defect site from the aggressiveness of the solution. EIS measurements revealed the decent corrosion inhibition efficiency of these inhibitors in order of DDA>NMTU. As a result, they are a favorable solution for longer endurance of coated piping steel and decreased operation expense contributing to economic saves, materials reliability and safety
    URI
    https://doi.org/10.29117/quarfe.2020.0002
    DOI/handle
    http://hdl.handle.net/10576/16537
    Collections
    • Theme 1: Energy, Environment & Resource Sustainability [‎108‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video