• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 1: Energy, Environment & Resource Sustainability
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 1: Energy, Environment & Resource Sustainability
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SiO2 Coated Li-rich Layered Oxides-Li1.2Ni0.13Mn0.54Co0.13O2 for efficient energy storage applications

    Thumbnail
    View/Open
    SiO2 Coated Li-rich Layered Oxides-Li1.2Ni0.13Mn0.54Co0.13O2 for efficient energy storage applications.pdf (1.318Mb)
    Date
    2020
    Author
    James Abraham, Jeffin
    Nisar, Umair
    Monawwar, Haya
    Abdul Quddus, Aisha
    Shakoor, Abdul
    Saleh, Mohamed
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Aljaber, Amina
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Lithium ion batteries (LIBs) are attractive for energy storage application. In this regard, lithium rich layered oxides (LLOs), are considered viable cathodes due to their tempting properties such as lower production cost, faster manufacturing process, excellent reversible capacity, and better electrochemical performance at high voltages. Despite these properties, LLOs lack in cyclic stability and inferior capacity retention. This study proposes a surface modification technique to overcome the above-mentioned limitations in which a layer of silica (SiO2) has been coated on the particles of Li1.2Ni0.13Mn0.54Co0.13O2.TheLi1.2Ni0.13Mn0.54Co0.13O2 wassynthesized by a sol-gel process and then coated with SiO2 (SiO2=1.0 wt. %, 1.5 wt. %, and 2.0 wt. %). The coatings were undertaken through a dry ball milling technique. Different characterization test such as X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission electron microscopy (TEM), elemental mapping, and X-ray photoelectron spectroscopy (XPS), were utilized to prove phase pure material formation and identify the SiO2 layer on the surface of Li1.2Ni0.13Mn0.54Co0.13O2. The electrochemical measurements, confirm the improvement in capacity retention and cyclability of SiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 samples with reference to the uncoated samples. This improvement can be ascribed to the protective and barrier effect of the coated layer on the LLOs particles avoiding any unwanted side reactions when the cathode is exposed to the electrolyte. A small trade-off between electrochemical performances and the coating thickness confirms the best efficiency of 1 wt.% SiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 when compared to other coated samples.
    URI
    https://doi.org/10.29117/quarfe.2020.0005
    DOI/handle
    http://hdl.handle.net/10576/16540
    Collections
    • Theme 1: Energy, Environment & Resource Sustainability [‎108‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video