• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring

    Thumbnail
    Date
    2017
    Author
    Abdaoui, Abderrazak
    El Fouly, Tarek M.
    Ahmed, Mohamed H.
    Metadata
    Show full item record
    Abstract
    Time synchronization in wireless sensor networks (WSNs) is a critical challenge for any distributed system such as WSNs for structural health monitoring (SHM). In SHM, mode shape identification, damage detection and damage localization are sensitive to time synchronization errors (TSEs). Indeed, the errors, due to the time shift between the incoming raw data from each sensor node, may hugely affect the data integrity and then the mode shape identification of the structure under analysis. In this paper, we characterize the impact of TSE on the modal analysis, damage detection and damage localization using frequency domain decomposition (FDD) implemented in a semi-local manner. In order to decrease the size of the transmitted data by the sensor nodes and reduce the processing load and the needed storage capacity on the central unit, we adopt a semi-local processing approach where each sensor node partially processed data and transmit it to a central unit for further processing such as mode shape identification, damage detection and damage localization. We adopt the model where each sensor node performs the Fast Fourier Transform (FFT) of the measured vibration signal and the transmission of the FFT values to a central unit or to a cluster head for further processing. The results show that TSE has a strong impact on the mode shape identification, damage detection and damage localization. Furthermore, results show that semi-local processing is more sensitive to TSE compared to centralized processing.
    DOI/handle
    http://dx.doi.org/10.1016/j.jnca.2017.01.004
    http://hdl.handle.net/10576/16880
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video