Conceptual data sampling for breast cancer histology image classification
المؤلف | Rezk, Eman |
المؤلف | Awan, Zainab |
المؤلف | Islam, Fahad |
المؤلف | Jaoua, Ali |
المؤلف | Al Maadeed, Somaya |
المؤلف | Zhang, Nan |
المؤلف | Das, Gautam |
المؤلف | Rajpoot, Nasir |
تاريخ الإتاحة | 2020-11-12T07:55:57Z |
تاريخ النشر | 2017 |
اسم المنشور | Computers in Biology and Medicine |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 104825 |
الملخص | Data analytics have become increasingly complicated as the amount of data has increased. One technique that is used to enable data analytics in large datasets is data sampling, in which a portion of the data is selected to preserve the data characteristics for use in data analytics. In this paper, we introduce a novel data sampling technique that is rooted in formal concept analysis theory. This technique is used to create samples reliant on the data distribution across a set of binary patterns. The proposed sampling technique is applied in classifying the regions of breast cancer histology images as malignant or benign. The performance of our method is compared to other classical sampling methods. The results indicate that our method is efficient and generates an illustrative sample of small size. It is also competing with other sampling methods in terms of sample size and sample quality represented in classification accuracy and F1 measure. 1 2017 Elsevier Ltd |
راعي المشروع | This contribution was made possible by NPRP grant #07- 794-1-145 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Elsevier Ltd |
الموضوع | Breast cancer classification Data sampling Formal concept analysis Histopathology Image segmentation |
النوع | Article |
الصفحات | 59-67 |
رقم المجلد | 89 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]