• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment

    Thumbnail
    Date
    2017
    Author
    Wei, Jing
    Ren, Yuan
    Luo, Wei
    Sun, Zhenkun
    Cheng, Xiaowei
    Li, Yuhui
    Deng, Yonghui
    Elzatahry, Ahmed A.
    Al-Dahyan, Daifallah
    Zhao, Dongyuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Alumina has recently turned out to be effective in enrichment of biomacrolecules like phosphopeptides due to its good affinity to phosphor groups. Ordered mesoporous alumina (OMA) materials with high surface areas, regular porous structures, and large pore size are an ideal absorbent for the enrichment of phosphopeptides. Herein, a ligand-assisted solvent evaporation induced coassembly route is developed to synthesize OMA materials with an ultralarge pore size (16.0-18.9 nm) using a high-molecular-weight poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a soft template, aluminum acetylacetonate as a precursor, and tetrahydrofuran as a solvent. The obtained ordered mesoporous alumina shows high surface area (114-197 m2/g), large pore volume (0.16-0.34 cm3/g), and high thermal stability (up to 900 �C). The OMA materials show crystalline ?-Al2O3 frameworks with crystal size of ?11 nm after calcination at 900 �C in air. Because of their high surface area, ultralarge pore size, and rich Lewis acid sites, the obtained OMA materials are demonstrated to be an excellent bioabsorbent in enriching phosphopeptides selectively from protein digestions with ultralow concentrations (2 ? 10-9 M), even from more complex samples from human serum.
    DOI/handle
    http://dx.doi.org/10.1021/acs.chemmater.6b05032
    http://hdl.handle.net/10576/17101
    Collections
    • Materials Science & Technology [‎222‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video