• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning for Anomaly Detection and Categorization in Multi-Cloud Environments

    Thumbnail
    Date
    2017
    Author
    Salman, Tara
    Bhamare, Deval
    Erbad, Aiman
    Jain, Raj
    Samaka, Mohammed
    Metadata
    Show full item record
    Abstract
    Cloud computing has been widely adopted by application service providers (ASPs) and enterprises to reduce both capital expenditures (CAPEX) and operational expenditures (OPEX). Applications and services previously running on private data centers are now being migrated to private or public clouds. Since most of the ASPs and enterprises have globally distributed user bases, their services need to be distributed across multiple clouds, spread across the globe which can achieve better performance in terms of latency, scalability and load balancing. The shift has eventually led the research community to study multi-cloud environments. However, the widespread acceptance of such environments has been hampered by major security concerns. Firewalls and traditional rule-based security protection techniques are not sufficient to protect user-data in multi-cloud scenarios. Recently, advances in machine learning techniques have attracted the attention of the research community to build intrusion detection systems (IDS) that can detect anomalies in the network traffic. Most of the research works, however, do not differentiate among different types of attacks. This is, in fact, necessary for appropriate countermeasures and defense against attacks. In this paper, we investigate both detecting and categorizing anomalies rather than just detecting, which is a common trend in the contemporary research works. We have used a popular publicly available dataset to build and test learning models for both detection and categorization of different attacks. To be precise, we have used two supervised machine learning techniques, namely linear regression (LR) and random forest (RF). We show that even if detection is perfect, categorization can be less accurate due to similarities between attacks. Our results demonstrate more than 99% detection accuracy and categorization accuracy of 93.6%, with the inability to categorize some attacks. Further, we argue that such categorization can be applied to multi-cloud environments using the same machine learning techniques.
    DOI/handle
    http://dx.doi.org/10.1109/CSCloud.2017.15
    http://hdl.handle.net/10576/17430
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video