Deep learning approach for EEG compression in mHealth system
المؤلف | Ben Said, Ahmed |
المؤلف | Mohamed, Amr |
المؤلف | Elfouly, Tarek |
تاريخ الإتاحة | 2021-01-25T06:45:46Z |
تاريخ النشر | 2017 |
اسم المنشور | 2017 13th International Wireless Communications and Mobile Computing Conference, IWCMC 2017 |
المصدر | Scopus |
الملخص | The emergence of mobile health (mHealth) systems has risen the challenges and concerns due to the sensitivity of the data involved in such systems. It is essential to ensure that these data are well delivered to the health monitoring center for accurate and perfect diagnosis and follow-up. Due to the wireless network constraints, these requirements become more challenging. In this paper, we propose a deep learning approach for EEG data compression in mHealth system. We show that the stacked autoencoder neural network architecture is efficient for EEG data compression. We conduct a comprehensive comparative study that demonstrates the effectiveness of our system for EEG compression in addition to preserving the total energy consumption. |
راعي المشروع | This publication was made possible by NPRP grant #7-684-1-127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Compression EEG MHealth Stacked autoencoder |
النوع | Conference |
الصفحات | 1508-1512 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2428 items ]