• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multispectral palmprint recognition based on local binary pattern histogram fourier features and gabor filter

    Thumbnail
    Date
    2016
    Author
    El-Tarhouni, Wafa
    Boubchir, Larbi
    Al-Maadeed, Noor
    Elbendak, Mosa
    Bouridane, Ahmed
    Metadata
    Show full item record
    Abstract
    Fusing multiple features within one biometric modality has attracted increasing attention and interest among researchers during recent decades because the concept is useful in addressing a wide range of real world problems. In this paper, we propose a novel fusion approach that combines two feature extraction algorithms: Local Binary Pattern Histogram Fourier Features (LBP-HF) and Gabor filter technique for use as one feature extraction. The fused features are applied to improve the performance of palmprint recognition. However, the main problem associated with this approach is the extremely large number of features, which can result in an overfitting problem for classification. To overcome this difficulty, spectral regression kernel discriminant analysis (SR-KDA) is applied as a dimensionality reduction technique. When designing the proposed recognition system, the k-nearest neighbour (KNN) classifier is used for the final decision. The performance of the proposed approach was evaluated using the challenging multispectral palmprint PolyU database. From the experimental results, it can be suggested that the system presented consistently yields significant performance gains compared to the state-of-the art methods.
    DOI/handle
    http://dx.doi.org/10.1109/EUVIP.2016.7764610
    http://hdl.handle.net/10576/18070
    Collections
    • Computer Science & Engineering [‎1930‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video