Robust model-free gait recognition by statistical dependency feature selection and Globality-Locality Preserving Projections
المؤلف | Rida, Imad |
المؤلف | Boubchir, Larbi |
المؤلف | Al-Maadeed, Noor |
المؤلف | Al-Maadeed, Somaya |
المؤلف | Bouridane, Ahmed |
تاريخ الإتاحة | 2021-04-11T11:07:19Z |
تاريخ النشر | 2016 |
اسم المنشور | 2016 39th International Conference on Telecommunications and Signal Processing, TSP 2016 |
المصدر | Scopus |
الملخص | Gait recognition aims to identify people through the analysis of the way they walk. The challenge of model-free based gait recognition is to cope with various intra-class variations such as clothing variations and carrying conditions that adversely affect the recognition performances. This paper proposes a novel method which combines Statistical Dependency (SD) feature selection with Globality-Locality Preserving Projections (GLPP) to alleviate the impact of intra-class variations so as to improve the recognition performances. The proposed method has been evaluated using CASIA Gait database (Dataset B) under variations of clothing and carrying conditions. The experimental results demonstrate that the proposed method achieves a Correct Classification Rate (CCR) up to 86% when compared to existing state-of-The-Art methods. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Feature selection Gait recognition Globally-Locality Preserving Projections Model free Statistical Dependency |
النوع | Conference |
الصفحات | 652-655 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]