• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An efficient hybrid prediction approach for predicting cloud consumer resource needs

    Thumbnail
    Date
    2016
    Author
    Erradi, Abdelkarim
    Kholidy, Hisham A.
    Metadata
    Show full item record
    Abstract
    The prediction of cloud consumer resource needs is a vital step for several cloud deployment applications such as capacity planning, workload management, and dynamic allocation of cloud resources. In this paper, we develop a new prediction model for predicting cloud consumer resource needs. The new model uses a new hybrid prediction approach that combines the Multiple Support Vector Regression (MSVR) model and the Autoregressive Integrated Moving Average (ARIMA) model to predict with higher accuracy the resource needs of a cloud consumer in terms of CPU, memory, and disk storage utilization. The new model is also able to predict the response time and throughput which in turn enable the cloud consumers to make a better scaling decision. The new model elucidated a better prediction accuracy than the current prediction models. In terms of CPU utilization prediction, it outperforms the accuracy of the existing cloud consumer prediction models that uses Linear Regression, Neural Network, and Support Vector Machines approaches by 72.66%, 44.24%, and 56.78% respectively according to MAPE and 56.95%, 80.42%, and 63.86% according to RMSE. The analysis, architecture, and experiment results of the new model are discussed in details in this paper. 2016 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/AICCSA.2016.7945639
    http://hdl.handle.net/10576/22390
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video