Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis
المؤلف | Hayat, T. |
المؤلف | Makhdoom, S. |
المؤلف | Awais, M. |
المؤلف | Saleem, S. |
المؤلف | Rashidi, M. M. |
تاريخ الإتاحة | 2021-09-01T10:03:25Z |
تاريخ النشر | 2016 |
اسم المنشور | Applied Mathematics and Mechanics (English Edition) |
المصدر | Scopus |
الملخص | The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers. 2016, Shanghai University and Springer-Verlag Berlin Heidelberg. |
اللغة | en |
الناشر | Springer Netherlands |
الموضوع | Boundary conditions Boundary layer flow Boundary layers Differential equations Friction Heat transfer Numerical methods Ordinary differential equations Axisymmetric flow Boundary layer approximation Convective boundary conditions Optimal homotopy analysis methods Rheological characteristics Similarity transformation Skin friction coefficient System of ordinary differential equations Flow of fluids |
النوع | Article |
الصفحات | 919-928 |
رقم العدد | 7 |
رقم المجلد | 37 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الرياضيات والإحصاء والفيزياء [740 items ]