• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Nwaoha, Chikezie
    Saiwan, Chintana
    Tontiwachwuthikul, Paitoon
    Supap, Teeradet
    Rongwong, Wichitpan
    Idem, Raphael
    AL-Marri, Mohammed J.
    Benamor, Abdelbaki
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, highly concentrated tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) were experimentally investigated for their potential capabilities in carbon dioxide (CO2) capture. The concentration of both AMP and PZ were varied but their combined concentration (AMP + PZ) was kept at 3 kmol/m3 to limit the possibility of precipitation, the maximum PZ concentration (1.5 kmol/m3), and the total aqueous amine solution concentration (6 kmol/m3). At atmospheric pressure condition, the absorption process was carried out at 313 K and 15.1%v/v CO2 while 363 K was used for the desorption analysis. Experimental results indicated that all the AMP - PZ - MEA tri-solvent blends possessed higher cyclic capacities, initial desorption rates, and lower heat duties (50-54.5%) compared to the standard 5 kmol/m3 MEA. For the initial absorption rates, only the tri-solvent blends with AMP/PZ molar ratios of 1 and 2 were higher than 5 kmol/m3 MEA. These findings, most especially the significant reduction in heat duty by halve reveal the prospects of AMP - PZ - MEA tri-solvent blends for CO2 capture applications. 2016 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.jngse.2016.06.002
    http://hdl.handle.net/10576/22433
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video