Handcrafted features with convolutional neural networks for detection of tumor cells in histology images
المؤلف | Kashif, Muhammad Nasim |
المؤلف | Raza, Shan E. Ahmed |
المؤلف | Sirinukunwattana, Korsuk |
المؤلف | Arif, Muhammmad |
المؤلف | Rajpoot, Nasir |
تاريخ الإتاحة | 2021-09-01T10:03:27Z |
تاريخ النشر | 2016 |
اسم المنشور | Proceedings - International Symposium on Biomedical Imaging |
المصدر | Scopus |
الملخص | Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture. 2016 IEEE. |
اللغة | en |
الناشر | IEEE Computer Society |
الموضوع | Convolution Histology Mathematical transformations Medical imaging Neural networks Tumors Convolutional neural network Digital pathologies Histology images Invariant texture features Nuclei detections Pixel intensities Scattering transforms Texture characteristics Feature extraction |
النوع | Conference |
الصفحات | 1029-1032 |
رقم المجلد | 2016-June |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2426 items ]