• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Motion-Aware Graph Regularized RPCA for background modeling of complex scenes

    Thumbnail
    Date
    2016
    Author
    Javed, Sajid
    Jung, Soon Ki
    Mahmood, Arif
    Bouwmans, Thierry
    Metadata
    Show full item record
    Abstract
    Computing a background model from a given sequence of video frames is a prerequisite for many computer vision applications. Recently, this problem has been posed as learning a low-dimensional subspace from high dimensional data. Many contemporary subspace segmentation methods have been proposed to overcome the limitations of the methods developed for simple background scenes. Unfortunately, because of the absence of motion information and without preserving intrinsic geometric structure of video data, most existing algorithms do not provide promising nature of the low-rank component for complex scenes. Such as largely occluded background by foreground objects, superfluity in video frames in order to cope with intermittent motion of foreground objects, sudden lighting condition variation, and camera jitter sequences. To overcome these difficulties, we propose a motion-aware regularization of graphs on low-rank component for video background modeling. We compute optical flow and use this information to make a motion-aware matrix. In order to learn the locality and similarity information within a video we compute inter-frame and intra-frame graphs which we use to preserve geometric information in the low-rank component. Finally, we use linearized alternating direction method with parallel splitting and adaptive penalty to incorporate the preceding steps to recover the model of the background. Experimental evaluations on challenging sequences demonstrate promising results over state-of-the-art methods.
    DOI/handle
    http://dx.doi.org/10.1109/ICPR.2016.7899619
    http://hdl.handle.net/10576/22759
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video