• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing

    Thumbnail
    Date
    2016
    Author
    Zhou, Xinran
    Zhu, Yongheng
    Luo, Wei
    Ren, Yuan
    Xu, Pengcheng
    Elzatahry, Ahmed A.
    Cheng, Xiaowei
    Alghamdi, Abdulaziz
    Deng, Yonghui
    Zhao, Dongyuan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Semiconductor zinc oxides with a high surface area and porosity offer great potential for their widespread applications, particularly in the areas of optoelectronic devices and solid-state gas sensors owing to their size-dependent physical and chemical properties. Herein, ordered mesoporous ZnO with uniform large mesopores and a crystalline framework is successfully synthesized through a citric acid assisted soft-template strategy using lab-made amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a structure directing agent. A gradient calcination treatment is employed to transform the as-made zinc complex/template composites into hierarchically mesoporous crystalline zinc oxides via decomposition of copolymer templates and the intermediate of zinc carbonate, while preserving the highly ordered mesostructure. Owing to its well-connected bimodal mesopores, high surface area and crystalline ZnO framework, the obtained mesoporous ZnO exhibits excellent ethanol sensing performance with a fast response (6 s) and recovery (7 s), and high sensitivity and selectivity. The Royal Society of Chemistry 2016.
    DOI/handle
    http://dx.doi.org/10.1039/c6ta05687c
    http://hdl.handle.net/10576/22922
    Collections
    • Materials Science & Technology [‎316‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video