• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments

    Thumbnail
    Date
    2016
    Author
    Paul, Arghya
    Manoharan, Vijayan
    Krafft, Dorothee
    Assmann, Alexander
    Uquillas, Jorge Alfredo
    Shin, Su Ryon
    Hasan, Anwarul
    Hussain, Mohammad Asif
    Memic, Adnan
    Gaharwar, Akhilesh K.
    Khademhosseini, Ali
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The ability to modulate stem cell differentiation in a three dimensional (3D) microenvironment for bone tissue engineering in the absence of exogenous pharmaceutical agents such as bone morphogenic protein (BMP-2) remains a challenge. In this study, we introduce extracellular matrix (ECM)-mimicking nanocomposite hydrogels to induce the osteogenic differentiation of human mesenchymal stem cells (hMSCs) for bone regeneration in the absence of any osteoinductive factors. In particular, we have reinforced a photocrosslinkable collagen-based matrix (gelatin methacryloyl, GelMA) using disk-shaped nanosilicates (nSi), a new class of two-dimensional (2D) nanomaterials. We show that nanoengineered hydrogels supported the migration and proliferation of encapsulated hMSCs, with no signs of cell apoptosis or inflammatory cytokine responses. The addition of nSi significantly enhances the osteogenic differentiation of encapsulated hMSCs as evident from the increase in alkaline phosphates (ALP) activity and the deposition of a biomineralized matrix compared to GelMA. We also show that microfabricated nanoengineered microgels can be used to pattern and control cellular behaviour. Furthermore, we demonstrate that nanoengineered hydrogel have high biocompatibility as determined by in vivo experiments using an immunocompetent rat model. Specifically, the hydrogels showed minimum localized immune responses, indicating their ability for tissue engineering applications. Overall, we showed the ability of nanoengineered hydrogels loaded with 2D nanosilicates for the osteogenic differentiation of stem cells in vitro, in the absence of any growth factors such as BMP-2. Our in vivo studies show high biocompatibility of nanocomposites and show the potential for growth factor free bone regeneration. 2016 The Royal Society of Chemistry.
    DOI/handle
    http://dx.doi.org/10.1039/c5tb02745d
    http://hdl.handle.net/10576/22933
    Collections
    • Mechanical & Industrial Engineering [‎1472‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video