• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 3: Information and Communication Technologies
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 3: Information and Communication Technologies
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stego-eHealth: An eHealth System for Secured Transfer of Medical Images Using Image Steganography

    Thumbnail
    View/Open
    170.pdf (1.631Mb)
    Date
    2021-10
    Author
    Subramanian, Nandhini
    Kunhoth, Jayakanth
    Al-Maadeed1, Somaya
    Bouridane, Ahmed
    Metadata
    Show full item record
    Abstract
    COVID pandemic has necessitated the need for virtual and online health care systems to avoid contacts. The transfer of sensitive medical information including the chest and lung X-ray happens through untrusted channels making it prone to many possible attacks. This paper aims to secure the medical data of the patients using image steganography when transferring through untrusted channels. A deep learning method with three parts is proposed – preprocessing module, embedding network and the extraction network. Features from the cover image and the secret image are extracted by the preprocessing module. The merged features from the preprocessing module are used to output the stego image by the embedding network. The stego image is given as the input to the extraction network to extract the ingrained secret image. Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are the evaluation metrics used. Higher PSNR value proves the higher security; robustness of the method and the image results show the higher imperceptibility. The hiding capacity of the proposed method is 100% since the cover image and the secret image are of the same size.
    DOI/handle
    http://dx.doi.org/10.29117/quarfe.2021.0155
    http://hdl.handle.net/10576/24341
    Collections
    • Computer Science & Engineering [‎1696‎ items ]
    • Theme 3: Information and Communication Technologies [‎16‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video