• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Samarium- and Terbium-Sensitized Luminescence via a Multivariate-Based Approach for the Determination of Orbifloxacin

    Thumbnail
    View/Open
    4778830.pdf (1.479Mb)
    Date
    2022-01-17
    Author
    Al-Hashimi, Nessreen
    El-Shafie, Ahmed S.
    Jumaa, Asmaa
    El-Azazy, Marwa
    Metadata
    Show full item record
    Abstract
    A lanthanide-based optical sensor has been developed for the sensitive and reliable spectrofluorometric determination of the fluoroquinolone antibiotic orbifloxacin (ORLX). Reaction of ORLX and two lanthanide metal ions, Sm(III) and Tb(III), in aqueous buffered solution produced highly fluorescent complexes. Plackett–Burman design (PBD) was used to explore the impact of four factors, pH, temperature (Temp), contact time (CT), and metal volume (MV), on the fluorescence intensity (FI) of the produced complexes. The obtained data showed that pH was the most significant variable. A blend of pH = 5.0, MV = 2.0 mL, T = 25°C, and CT = 10 min was used to achieve the maximum FI. FT-IR and Raman analyses were performed for the crystals of the as-prepared complexes. Obtained data showed shifting in most of the absorption bands, confirming the complexation of ORLX with both metal ions. Job’s method showed that the stoichiometry for the reaction of ORLX with Sm(III) and Tb(III) was 1 : 1. The proposed method was validated following the ICH guidelines. Injection formulation was analyzed successfully with the developed method with high recovery (99.42–100.91%). The detection and quantification limits were 0.987 and 3.289 ng/mL for the ORLX-Sm(III) complex and 1.020 and 3.399 ng/mL for the ORLX-Tb(III) complex, respectively.
    DOI/handle
    http://dx.doi.org/10.1155/2022/4778830
    http://hdl.handle.net/10576/25988
    Collections
    • Chemistry & Earth Sciences [‎614‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video