عرض بسيط للتسجيلة

المؤلفNashed, Mohamad Shadi
المؤلفRenno, Jamil
المؤلفMohamed, M. Shadi
تاريخ الإتاحة2022-04-19T07:30:53Z
تاريخ النشر2022-04-19
معرّف المصادر الموحدhttp://hdl.handle.net/10576/29984
الملخصThe modelling of fatigue using machine learning (ML) has been gaining traction in the engineering community. Among ML techniques, the use of probabilistic neural networks (PNNs) has recently emerged as a candidate for modelling fatigue applications. In this paper, we used PNNs with nonconstant variance to model fatigue. We present two case studies to demonstrate the approach. First, we model the fatigue life of cover-plated beams under constant amplitude loading and then we model the relationship between random vibration velocity and equivalent stress in process pipework. The two case studies demonstrate that PNNs can model the distribution of the data while also considering the variability of both distribution parameters (mean and standard deviation). This shows the potential of PNNs with nonconstant variance in modelling fatigue applications. All the data and code used in this paper will be available online.
راعي المشروعFinancial support for this research was graciously provided by Qatar National Research Fund (a member of Qatar Foundation) via the National Priorities Research Project under grant NPRP-11S-1220-170112.
اللغةen
العلاقةhttp://hdl.handle.net/10576/32090
الموضوعprobabilistic neural network
nonconstant variance
fatigue modelling
العنوانFatigue-Life-Prediction-by-Means-of-Nonconstant-Variance-Probabilistic-Neural-Network
النوعDataset
dc.accessType Open Access


الملفات في هذه التسجيلة

Icon

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة