• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the Suitability of Vibration Acceptance Criteria of Process Pipework

    Thumbnail
    View/Open
    ShadiAdvancesMaterials2022.pdf (3.848Mb)
    Date
    2022-01-01
    Author
    Shady, Omar Tawfik
    Renno, Jamil
    Mohamed, M. Shadi
    Sassi, Sadok
    Muthalif, Asan G.A.
    Metadata
    Show full item record
    Abstract
    The risk of vibration-induced fatigue in process pipework is usually assessed through vibration measurements. For small-bore pipework, integrity personnel would measure the vibration of the pipework and refer to widely used charts to quantify the risk of vibration-induced fatigue. If the vibration levels are classified as OK, no action is required on behalf of the operators. However, if it is a CONCERN or PROBLEM vibration level, strain measurements are required to adequately quantify the risk through a fatigue life assessment. In this paper, we examine the suitability of a widely used vibration acceptance criteria through finite element models. A total of 4,800 models are used to study the suitability of this vibration acceptance criteria by monitoring both the vibration and dynamic stress. The model comprises a small-bore pipe (2″ SCH 40) that is fitted on a mainline size 5″ SCH 40 using a weldolet; the length of the mainline takes three values resulting in three models. The mainline supporting conditions will be varied using translational and rotational springs. The finite element models will be excited using a point load resembling flow-induced forces (with varying flow velocity and fluid composition). These excitations are obtained from the literature and are based on experimental studies as power spectral density functions. The results show that the studied vibration acceptance criterion is suitable in 99.73% of all the studied models with 68.27% confidence level. For the models with a shorter mainline pipe, the criterial is suitable in 76.5% of the time with 68.27% confidence level.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123235136&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2022/2168818
    http://hdl.handle.net/10576/29985
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video