• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    B5G: Predictive Container Auto-Scaling for Cellular Evolved Packet Core

    Thumbnail
    Date
    2021
    Author
    Bello Y.
    Abdellatif A.A.
    Allahham M.S.
    Hussein A.R.
    Erbad A.
    Mohamed A.
    Guizani M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In order to maintain a satisfactory performance in the midst of rapid growth of mobile traffic, the mobile network infrastructure needs to be scaled. Thus there has been significant interest in scalability of mobile core networks and a variety of scaling solutions have been proposed that rely on horizontal scaling or vertical scaling. These solutions handle the scaling of the mobile core networks' elements on virtual machines (which normally take at while to create) with the help of customized modules at the cost of increased overheads. Utilizing Amazon Web Services (AWS) embedded features, we present two predictive horizontal auto-scalers for containerized and non-containerized versions of EPC that scales the two versions of the EPC according to their respective CPU utilization. Additionally, we propose an efficient task assignment scheme for AWS that aims to maximize throughput and achieve fairness among competing instances. In particular, we propose two solutions: Relaxed Optimized Solution (ROS) and a Heuristic Approach (HA). Leveraging AWS environment, we implemented and evaluated the two proposed auto-scaling models based on the attachment success rate, latency, CPU usage and RAM usage. Our findings show the superiority of container-based model over VM-based model in terms of resource utilization. The obtained results for the two proposed task assignment solutions demonstrates a significant improvement both in fairness and throughput compared to other existing solutions. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3126048
    http://hdl.handle.net/10576/30067
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video