• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3-D Stochastic Geometry-based Modeling and Performance Analysis of Efficient Security Enhancement scheme for IoT Systems

    Thumbnail
    Date
    2021
    Author
    Chamkhia H.
    Erbad A.
    Al-Ali A.
    Mohamed A.
    Refaey A.
    Guizani M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Internet of Things (IoT) systems are becoming core building blocks for different services and applications supporting every day’s life. The heterogeneous nature of IoT devices and the complex use scenarios make it hard to build secure and private IoT systems. Physical-Layer Security (PLS) can lead to efficient solutions reducing the impact of the increasing security threats. In this work, we propose a new PLS-based IoT transmission scheme that offers a highly secured transmission probability, low-computational complexity, and reduced power consumption. We utilize 3-D stochastic geometry to model a more realistic IoT system and test our proposed scheme in different practical scenarios, where sensors, Access Points (APs), and eavesdroppers are randomly located in 3-D space. We focus on the system performance, in terms of Secrecy Outage Probability (SOP), and secured successful transmission probability (SSTP), using tight closed-form expressions. An optimization problem is developed to deduce the optimal sensors’ transmit power, the APs’ density, and the maximum number of transmission tentative, when maximizing the SSTP. The proposed scheme outperforms the baseline re-transmission scheme, in terms of SOP and SSTP based on analytical and simulation results. IEEE
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2021.3112883
    http://hdl.handle.net/10576/30071
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video