• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RL-PDNN: Reinforcement Learning for Privacy-Aware Distributed Neural Networks in IoT Systems

    Thumbnail
    Date
    2021
    Author
    Baccour E.
    Erbad A.
    Mohamed A.
    Hamdi M.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Due to their high computational and memory demand, deep learning applications are mainly restricted to high-performance units, e.g., cloud and edge servers. Particularly, in Internet of Things (IoT) systems, the data acquired by pervasive devices is sent to the computing servers for classification. However, this approach might not be always possible because of the limited bandwidth and the privacy issues. Furthermore, it presents uncertainty in terms of latency because of the unstable remote connectivity. To support resource and delay requirements of such paradigm, joint and real-time deep co-inference framework with IoT synergy was introduced. However, scheduling the distributed, dynamic and real-time Deep Neural Network (DNN) inference requests among resource-constrained devices has not been well explored in the literature. Additionally, the distribution of DNN has drawn the attention to the privacy protection of sensitive data. In this context, various threats have been presented, including white-box attacks, where malicious devices can accurately recover received inputs if the DNN model is fully exposed to participants. In this paper, we introduce a methodology aiming at distributing the DNN tasks onto the resource-constrained devices of the IoT system, while avoiding to reveal the model to participants. We formulate such an approach as an optimization problem, where we establish a trade-off between the latency of co-inference, the privacy of the data, and the limited resources of devices. Next, due to the NP-hardness of the problem, we shape our approach as a reinforcement learning design adequate for real-time applications and highly dynamic systems, namely RL-PDNN. Our system proved its ability to outperform existing static approaches and achieve close results compared to the optimal solution. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3070627
    http://hdl.handle.net/10576/30074
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video