• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    To chain or not to chain: A reinforcement learning approach for blockchain-enabled IoT monitoring applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Mhaisen N.
    Fetais N.
    Erbad A.
    Mohamed A.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Traceability and autonomous business logic execution are highly desirable features in IoT monitoring applications. Traceability enables verifying signals history for security or analytical purposes. On the other hand, the autonomous execution of pre-defined rules establishes trust between parties involved in such applications and improves the efficiency of their workflow. Smart Contracts (SCs) firmly guarantee these two requirements due to the blockchain's immutable distributed ledger and secure cryptographic consensus rules. Thus, SCs emerged as an appealing technology for monitoring applications. However, the cost of using public blockchains to harvest these guarantees can be prohibitive, especially with the considerable fluctuation of coin prices and different use case requirements. In this paper, we introduce a general SC-based IoT monitoring framework that can leverage the security features of public blockchains while minimizing the corresponding monetary cost. The framework contains a reinforcement learning agent that adapts to users needs and acts in real-time to smartly set the data submission rate of IoT sensors. Results based on the Ethereum protocol show significant potential cost saving depending on users preferences.
    DOI/handle
    http://dx.doi.org/10.1016/j.future.2020.04.035
    http://hdl.handle.net/10576/30085
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video