• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart Edge Healthcare Data Sharing System

    Thumbnail
    Date
    2020
    Author
    Chkirbene Z.
    Mohamed A.
    Erbad A.
    Guizani M.
    Metadata
    Show full item record
    Abstract
    Smart health systems improve the efficiency of healthcare infrastructures and biomedical systems by integrating information and technology into health and medical practices. However, reliability, scalabilty and latency are among the many challenges hindering the realization of next-generation healthcare. In fact, with the exponential increases in the volume of patient data being produced and processed, many healthcare system' are being overwhelmed with the deluge of data they are facing. Many systems have been proposed to improve the system latency and scalability. However, there are concerns related to some of theses systems regarding the increasing levels of required human interaction which impact their efficiency. Recently, machine learning techniques are gaining a lot of interest in health applications as they exhibit fast processing with realtime predictions. In this paper, we propose a new healthcare system to reduce the waiting time in emergency department and improve the network scalability in any distributed system. The proposed model integrates the power of edge computing with machine learning techniques for providing a good quality of healthcare services. The machine learning algorithm is used to generate a classifier that can predict with high levels of accuracy the likelyhood of a patient to have a heart attack using his physiological signals ECG. The proposed system stores the patient data in a centralized database and generates a unique index using a new data-dependent Indexing algorithm that transforms the patient data into unique code to be sent for any medical data exchange. Multiple machine learning algorithms are studied and the best algorithm will be selected based on efficient performance result for the prediction of heart attack problem. simulation results show that the proposed model can effectively detect the abnormal heart beats with 91% using SVM algorithm. We show also that the proposed system outperforms conventional indexing algorithm systems in terms of collisions rate. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC48107.2020.9148195
    http://hdl.handle.net/10576/30094
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video