عرض بسيط للتسجيلة

المؤلفHaouari F.
المؤلفBaccour E.
المؤلفErbad A.
المؤلفMohamed A.
المؤلفGuizani M.
تاريخ الإتاحة2022-04-21T08:58:27Z
تاريخ النشر2019
اسم المنشورIEEE International Conference on Communications
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ICC.2019.8761591
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30110
الملخصDriven by the tremendous technological advancement of personal devices and the prevalence of wireless mobile network accesses, the world has witnessed an explosion in crowdsourced live streaming. Ensuring a better viewers quality of experience (QoE) is the key to maximize the audiences number and increase streaming providers' profits. This can be achieved by advocating a geo-distributed cloud infrastructure to allocate the multimedia resources as close as possible to viewers, in order to minimize the access delay and video stalls. Moreover, allocating the exact needed resources beforehand avoids over-provisioning, which may lead to significant costs by the service providers. In the contrary, under-provisioning might cause significant delays to the viewers. In this paper, we introduce a prediction driven resource allocation framework, to maximize the QoE of viewers and minimize the resource allocation cost. First, by exploiting the viewers locations available in our unique dataset, we implement a machine learning model to predict the viewers number near each geo-distributed cloud site. Second, based on the predicted results that showed to be close to the actual values, we formulate an optimization problem to proactively allocate resources at the viewers proximity. Additionally, we will present a trade-off between the video access delay and the cost of resource allocation. 2019 IEEE.
راعي المشروعQatar Foundation;Qatar National Research Fund
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعCloud computing
Crowdsourcing
Economic and social effects
Learning systems
Machine learning
Quality of service
Resource allocation
Wireless networks
Live video
Machine learning approaches
Machine learning models
Multimedia resources
Optimization problems
Quality of experience (QoE)
Technological advancement
Wireless mobile networks
Multimedia systems
العنوانQoE-Aware Resource Allocation for Crowdsourced Live Streaming: A Machine Learning Approach
النوعConference
رقم المجلد2019-May
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة