عرض بسيط للتسجيلة

المؤلفSaid A.B.
المؤلفMohamed A.
المؤلفElfouly T.
المؤلفAbualsaud K.
المؤلفHarras K.
تاريخ الإتاحة2022-04-21T08:58:27Z
تاريخ النشر2018
اسم المنشور2018 14th International Wireless Communications and Mobile Computing Conference, IWCMC 2018
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/IWCMC.2018.8450434
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30112
الملخصIn the context of mobile Health (mHealth) applications, data are prone to several sources of contamination which would lead to false interpretation and misleading classification results. In this paper, a robust deep learning approach with low rank model is proposed to classify mHealth vital signs. Further-more, we propose using the Schatten-p norm instead of the classic nuclear norm since it has shown better recovery performance for several applications. We conduct a comprehensive study where we compare our method to the state-of-art methods and evaluate its performance with respect to the key system parameters. Our findings show indeed that combining deep network with dictionary learning model is effective for vital signs classification even in presence of 50% corruption with 8% improvement over the closest performance. 2018 IEEE.
راعي المشروعQatar Foundation;Qatar National Research Fund
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعClassification (of information)
mHealth
Mobile computing
Wireless telecommunication systems
Classification results
Data classification
Dictionary learning
Learning approach
low rank
Mobile Health (M-Health)
Recovery performance
State-of-art methods
Deep learning
العنوانDeep learning and low rank dictionary model for mHealth data classification
النوعConference
الصفحات358-363
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة