• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An evolutionary game theoretic approach for cooperative spectrum sensing

    Thumbnail
    Date
    2016
    Author
    Salama A.M.
    Alali A.
    Mohamed A.
    Metadata
    Show full item record
    Abstract
    Many spectrum sensing techniques have been proposed to allow a secondary user (SU) to utilize a primary user's (PU) spectrum through opportunistic access. However, few of them have considered the tradeoff between accuracy and energy consumption by taking into account the selfishness of the (SUs) in a distributed network. In this work, we consider spectrum sensing as a game where the payoff is the throughput of each SU/player. Each SU chooses between two actions, parallel individual sensing and sequential cooperative sensing techniques. Using those techniques, each SU will distributively decide the existence of the PU. Due to the repetitive nature of our game, we model it using evolutionary game (EG) theory which provides a suitable model that describes the behavioral evolution of the actions taken by the SUs. We address our problem in two cases, when the players are homogeneous and heterogeneous respectively. For the sake of stability, we find the equilibria that lead to evolutionary stable strategies (ESS) by proving that our system is evolutionary asymptotically stable, in both cases, under certain conditions on the sensing time and the false alarm probability. 2016 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WCNC.2016.7564914
    http://hdl.handle.net/10576/30117
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video