• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time implementation and evaluation of an adaptive energy-aware data compression for wireless EEG monitoring systems

    Thumbnail
    Date
    2014
    Author
    Awad A.
    Hamdy M.
    Mohamed A.
    Alnuweiri H.
    Metadata
    Show full item record
    Abstract
    Wireless sensor technologies can provide the leverage needed to enhance patient-caregivers collaboration through ubiquitous access and direct communication, which promotes smart and scalable vital sign monitoring of the chronically ill and elderly people live an independent life. However, the design and operation of BASNs are challenging, because of the limited power and small form factor of biomedical sensors. In this paper, an adaptive compression technique that aims at achieving low-complexity energy-efficient compression subject to time delay and distortion constraints is proposed. In particular, we analyze the processing energy consumption, then an energy consumption optimization model with constraints of distortion and time delay is proposed. Using this model, the Personal Data Aggregator (PDA) dynamically chooses the optimal compression parameters according to real-time measurements of the packet delivery ratio (PDR) or individual users. To evaluate and verify our optimization model, we develop an experimental testbed, where the EEG data is sent to the PDA that compresses the gathered data and forwards it to the server which decompresses and reconstructs the original signal. Experimental testbed and simulation results show that our adaptive compression technique can offer significant savings in the delivery time with low complexity and without affecting application accuracies. 2014 ICST.
    DOI/handle
    http://dx.doi.org/10.1109/QSHINE.2014.6928668
    http://hdl.handle.net/10576/30149
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video