• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian network based heuristic for energy aware EEG signal classification

    Thumbnail
    Date
    2013
    Author
    Mohamed A.
    Shaban K.B.
    Mohamed A.
    Metadata
    Show full item record
    Abstract
    A major challenge in the current research of wireless electroencephalograph (EEG) sensor-based medical or Brain Computer Interface applications is how to classify EEG signals as accurately and energy efficient as possible. One way to achieve this objective is to select a subset of the most discriminant EEG channels during the signal classification. In this paper, we propose a Bayesian network based-heuristic channel selection approach. First, the EEG channels are ranked based on their task discriminant capabilities. The highest task-related channels are chosen as an initial set. Subsequently, this set is submitted to a Bayesian network to calculate the task weights. Based on these weights, the heuristic algorithm is either selects an appropriate channel or ends the selection process. The proposed technique has been applied on two classification problems. It achieved 92% and 93.39% classification accuracies, utilizing only 6 out of 14 channels and 13 out of 64 channels, respectively. Springer International Publishing 2013.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-319-02753-1_25
    http://hdl.handle.net/10576/30161
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Multifrequency Polsar Image Classification Using Dual-Band 1D Convolutional Neural Networks 

      Ahishali M.; Kiranyaz, Mustafa Serkan; Ince T.; Gabbouj M. ( Institute of Electrical and Electronics Engineers Inc. , 2020 , Conference)
      In this work, we propose a novel classification approach based on dual-band one-dimensional Convolutional Neural Networks (1D-CNNs) for classification of multifrequency polarimetric SAR (PolSAR) data. The proposed approach ...
    • Thumbnail

      Convolutional Sparse Support Estimator-Based COVID-19 Recognition from X-Ray Images 

      Yamac M.; Ahishali M.; Degerli A.; Kiranyaz, Mustafa Serkan; Chowdhury M.E.H.; Gabbouj M.... more authors ... less authors ( Institute of Electrical and Electronics Engineers Inc. , 2021 , Article)
      Coronavirus disease (COVID-19) has been the main agenda of the whole world ever since it came into sight. X-ray imaging is a common and easily accessible tool that has great potential for COVID-19 diagnosis and prognosis. ...
    • Thumbnail

      Performance Comparison of Learned vs. Engineered Features for Polarimetric SAR Terrain Classification 

      Ahishali M.; Ince T.; Kiranyaz, Mustafa Serkan; Gabbouj M. ( Institute of Electrical and Electronics Engineers Inc. , 2019 , Conference)
      In this work, we propose to use learned features for terrain classification of Polarimetric Synthetic Aperture Radar (PolSAR) images. In the proposed classification framework, the learned features are extracted from sliding ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video