عرض بسيط للتسجيلة

المؤلفHussein R.
المؤلفMohamed A.
المؤلفShahan K.
المؤلفMohamed A.A.
تاريخ الإتاحة2022-04-21T08:58:35Z
تاريخ النشر2013
اسم المنشورIEEE Symposium on Computers and Informatics, ISCI 2013
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ISCI.2013.6612397
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30168
الملخصEpileptic detection techniques rely heavily on the Electroencephalography (EEG) as representative signal carrying valuable information pertaining to the current brain state. For these techniques to be efficient and reliable, a set of discriminant, epileptic-related features has first to be obtained. Furthermore, depending on the classifier model used, a subset of these features is identified and selected for the classifier to yield an optimum performance. Many feature extraction and selection techniques have been reported in the literature, utilizing different strategies. The aim of this work is to review the most widely used ones and to evaluate their performance in terms of their overall complexity and classification accuracy. For this purpose, the support vector machine (SVM) is chosen as a classifier model to study the performance of the obtained features. Extensive experimental work has been carried out and the comparative results and trade-offs are reported. 2013 IEEE.
اللغةen
الناشرIEEE Computer Society
الموضوعElectroencephalography
Electrophysiology
Feature extraction
Information science
Classification accuracy
Classifier models
Comparative studies
Epileptic detection
Epileptic seizures
Feature extraction and selection
feature selsection
Optimum performance
Support vector machines
العنوانEEG feature extraction and selection techniques for epileptic detection: A comparative study
النوعConference
الصفحات170-175
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة